SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training

Authors: Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V. Le, Sergey Levine, Yi Ma

Abstract: Supervised fine-tuning (SFT) and reinforcement learning (RL) are widely used
post-training techniques for foundation models. However, their roles in
enhancing model generalization capabilities remain unclear. This paper studies
the difference between SFT and RL on generalization and memorization, focusing
on text-based rule variants and visual variants. We introduce GeneralPoints, an
arithmetic reasoning card game, and adopt V-IRL, a real-world navigation
environment, to assess how models trained with SFT and RL generalize to unseen
variants in both textual and visual domains. We show that RL, especially when
trained with an outcome-based reward, generalizes across both rule-based
textual and visual variants. SFT, in contrast, tends to memorize training data
and struggles to generalize out-of-distribution scenarios. Further analysis
reveals that RL improves the model’s underlying visual recognition
capabilities, contributing to its enhanced generalization in the visual domain.
Despite RL’s superior generalization, we show that SFT remains essential for
effective RL training; SFT stabilizes the model’s output format, enabling
subsequent RL to achieve its performance gains. These findings demonstrates the
capability of RL for acquiring generalizable knowledge in complex, multi-modal
tasks.

Source: http://arxiv.org/abs/2501.17161v1

About the Author

Leave a Reply

Your email address will not be published. Required fields are marked *

You may also like these