Robust Representation Consistency Model via Contrastive Denoising

Authors: Jiachen Lei, Julius Berner, Jiongxiao Wang, Zhongzhu Chen, Zhongjia Ba, Kui Ren, Jun Zhu, Anima Anandkumar

Abstract: Robustness is essential for deep neural networks, especially in
security-sensitive applications. To this end, randomized smoothing provides
theoretical guarantees for certifying robustness against adversarial
perturbations. Recently, diffusion models have been successfully employed for
randomized smoothing to purify noise-perturbed samples before making
predictions with a standard classifier. While these methods excel at small
perturbation radii, they struggle with larger perturbations and incur a
significant computational overhead during inference compared to classical
methods. To address this, we reformulate the generative modeling task along the
diffusion trajectories in pixel space as a discriminative task in the latent
space. Specifically, we use instance discrimination to achieve consistent
representations along the trajectories by aligning temporally adjacent points.
After fine-tuning based on the learned representations, our model enables
implicit denoising-then-classification via a single prediction, substantially
reducing inference costs. We conduct extensive experiments on various datasets
and achieve state-of-the-art performance with minimal computation budget during
inference. For example, our method outperforms the certified accuracy of
diffusion-based methods on ImageNet across all perturbation radii by 5.3% on
average, with up to 11.6% at larger radii, while reducing inference costs by
85$\times$ on average. Codes are available at:
https://github.com/jiachenlei/rRCM.

Source: http://arxiv.org/abs/2501.13094v1

About the Author

Leave a Reply

Your email address will not be published. Required fields are marked *

You may also like these