K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences

Authors: Zhikai Li, Xuewen Liu, Dongrong Fu, Jianquan Li, Qingyi Gu, Kurt Keutzer, Zhen Dong

Abstract: The rapid advancement of visual generative models necessitates efficient and
reliable evaluation methods. Arena platform, which gathers user votes on model
comparisons, can rank models with human preferences. However, traditional Arena
methods, while established, require an excessive number of comparisons for
ranking to converge and are vulnerable to preference noise in voting,
suggesting the need for better approaches tailored to contemporary evaluation
challenges. In this paper, we introduce K-Sort Arena, an efficient and reliable
platform based on a key insight: images and videos possess higher perceptual
intuitiveness than texts, enabling rapid evaluation of multiple samples
simultaneously. Consequently, K-Sort Arena employs K-wise comparisons, allowing
K models to engage in free-for-all competitions, which yield much richer
information than pairwise comparisons. To enhance the robustness of the system,
we leverage probabilistic modeling and Bayesian updating techniques. We propose
an exploration-exploitation-based matchmaking strategy to facilitate more
informative comparisons. In our experiments, K-Sort Arena exhibits 16.3x faster
convergence compared to the widely used ELO algorithm. To further validate the
superiority and obtain a comprehensive leaderboard, we collect human feedback
via crowdsourced evaluations of numerous cutting-edge text-to-image and
text-to-video models. Thanks to its high efficiency, K-Sort Arena can
continuously incorporate emerging models and update the leaderboard with
minimal votes. Our project has undergone several months of internal testing and
is now available at https://huggingface.co/spaces/ksort/K-Sort-Arena

Source: http://arxiv.org/abs/2408.14468v1

About the Author

Leave a Reply

Your email address will not be published. Required fields are marked *

You may also like these